Math 221: LINEAR ALGEBRA

Chapter 5. Vector Space \mathbb{R}^n §5-4. Rank of a Matrix

Le Chen¹

Emory University, 2021 Spring

(last updated on 01/25/2021)

The Rank Theorem

Rank-Nullity Theorem

Full Rank Cases

The Rank Theorem

Rank-Nullity Theorem

Full Rank Cases

Definitions

Let A be an $m \times n$ matrix.

The column space of A, denoted col(A) is the subspace of \mathbb{R}^m spanned by the columns of A.

Γ	1	8	13	12
	14	11	2	7
	4	5	16	9
	15	10	3	6

Definitions

Let A be an $m \times n$ matrix.

▶ The column space of A, denoted col(A) is the subspace of \mathbb{R}^m spanned by the columns of A.

Γ	1	8	13	12
	14	11	2	7
	4	5	16	9
	15	10	3	6

▶ The row space of A, denoted row(A) is the subspace of \mathbb{R}^n spanned by the rows of A (or the columns of A^T).

$\boxed{1}$	8	13	12
14	11	2	7)
4	5	16	9
(15	10	3	6

We saw earlier that col(A) = im(A).

We saw earlier that col(A) = im(A).

Remark (Notation)

Let A and B be $m \times n$ matrices. We write $A \to B$ if B can be obtained from A by a sequence of elementary row (column) operations. Note that $A \to B$ if and only if $B \to A$.

Let A and B be $m \times n$ matrices.

- 1. If $A \to B$ by elementary row operations, then row(A) = row(B).
- 2. If $A \to B$ by elementary column operations, then col(A) = col(B).

Let A and B be $m \times n$ matrices.

- 1. If $A \to B$ by elementary row operations, then row(A) = row(B).
- 2. If $A \to B$ by elementary column operations, then col(A) = col(B).

Proof.

It suffices to prove only part one, and only for a single row operation. (Why?)

Let A and B be $m \times n$ matrices.

- 1. If $A \to B$ by elementary row operations, then row(A) = row(B).
- 2. If $A \to B$ by elementary column operations, then col(A) = col(B).

Proof.

It suffices to prove only part one, and only for a single row operation. (Why?) Thus let $\vec{r}_1, \vec{r}_2, \ldots, \vec{r}_m$ denote the rows of A.

Let A and B be $m \times n$ matrices.

- 1. If $A \to B$ by elementary row operations, then row(A) = row(B).
- 2. If $A \to B$ by elementary column operations, then col(A) = col(B).

Proof.

It suffices to prove only part one, and only for a single row operation. (Why?)

Thus let $\vec{r}_1, \vec{r}_2, \ldots, \vec{r}_m$ denote the rows of A.

► If B is obtained from A by interchanging two rows of A, then A and B have exactly the same rows, so row(B) = row(A).

Suppose p ≠ 0, and suppose that for some j, 1 ≤ j ≤ m, B is obtained from A by multiplying row j by p. Then

$$row(B) = span\{\vec{r}_1,\ldots,p\vec{r}_j,\ldots,\vec{r}_m\}.$$

Since

$$\{\vec{r}_1,\ldots,\vec{pr_j},\ldots,\vec{r}_m\}\subseteq row(A),$$

it follows that $row(B) \subseteq row(A)$.

Suppose p ≠ 0, and suppose that for some j, 1 ≤ j ≤ m, B is obtained from A by multiplying row j by p. Then

$$row(B) = span\{\vec{r}_1,\ldots,p\vec{r}_j,\ldots,\vec{r}_m\}.$$

Since

$$\{\vec{r}_1,\ldots,\vec{pr}_j,\ldots,\vec{r}_m\} \subseteq row(A),$$

it follows that $row(B) \subseteq row(A)$. Conversely, since

$$\{\vec{r}_1,\ldots,\vec{r}_m\}\subseteq row(B),$$

it follows that $row(A) \subseteq row(B)$. Therefore, row(B) = row(A).

Suppose p ≠ 0, and suppose that for some i and j, 1 ≤ i, j ≤ m, B is obtained from A by adding p time row j to row i. Without loss of generality, we may assume i < j.</p>

Suppose p ≠ 0, and suppose that for some i and j, 1 ≤ i, j ≤ m, B is obtained from A by adding p time row j to row i. Without loss of generality, we may assume i < j. Then</p>

$$\operatorname{row}(B) = \operatorname{span}\{\vec{r}_1,\ldots,\vec{r}_{i-1},\vec{r}_i+p\vec{r}_j,\ldots,\vec{r}_j,\ldots,\vec{r}_m\}.$$

Since

$$\{\vec{r}_1,\ldots,\vec{r}_{i-1},\vec{r}_i+p\vec{r}_j,\ldots,\vec{r}_m\}\subseteq row(A),$$

it follows that $row(B) \subseteq row(A)$.

Suppose p ≠ 0, and suppose that for some i and j, 1 ≤ i, j ≤ m, B is obtained from A by adding p time row j to row i. Without loss of generality, we may assume i < j. Then</p>

$$row(B) = span\{\vec{r}_1, \dots, \vec{r}_{i-1}, \vec{r}_i + p\vec{r}_j, \dots, \vec{r}_j, \dots, \vec{r}_m\}.$$

Since

$$\{\vec{r}_1,\ldots,\vec{r}_{i-1},\vec{r}_i+p\vec{r}_j,\ldots,\vec{r}_m\}\subseteq row(A),$$

it follows that $row(B) \subseteq row(A)$. Conversely, since

 $\{\vec{r}_1,\ldots,\vec{r}_m\}\subseteq row(B),$

it follows that $row(A) \subseteq row(B)$. Therefore, row(B) = row(A).

Corollary

Let A be an $m \times n$ matrix, U an invertible $m \times m$ matrix, and V an invertible $n \times n$ matrix. Then row(UA) = row(A) and col(AV) = col(A),

Corollary

Let A be an $m \times n$ matrix, U an invertible $m \times m$ matrix, and V an invertible $n \times n$ matrix. Then row(UA) = row(A) and col(AV) = col(A),

Proof.

Since U is invertible, U is a product of elementary matrices, implying that $A \rightarrow UA$ by a sequence of elementary row operations. By Lemma 2, row(UA) = row(A).

Now consider AV: $col(AV) = row((AV)^T) = row(V^TA^T)$ and V^T is invertible (a matrix is invertible if and only if its transpose is invertible). It follows from the first part of this Corollary that

$$row(V^{T}A^{T}) = row(A^{T}).$$

But $row(A^T) = col(A)$, and therefore col(AV) = col(A).

If **R** is a row-echelon matrix then

- 1. the nonzero rows of R are a basis of row(R);
- 2. the columns of R containing the leading ones are a basis of col(R).

Example

Let

$$\mathbf{R} = \begin{bmatrix} \mathbf{1} & \mathbf{2} & \mathbf{2} & -\mathbf{2} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{3} & \mathbf{1} & -\mathbf{1} & \mathbf{2} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & -\mathbf{2} & \mathbf{5} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}.$$

1. Since the nonzero rows of R are linearly independent, they form a basis of row(R).

Example

Let

$$\mathbf{R} = \begin{bmatrix} \mathbf{1} & \mathbf{2} & \mathbf{2} & -\mathbf{2} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{3} & \mathbf{1} & -\mathbf{1} & \mathbf{2} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & -\mathbf{2} & \mathbf{5} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}.$$

- 1. Since the nonzero rows of R are linearly independent, they form a basis of row(R).
- Let B = {ē₁, ē₂, ē₃, ē₄} ⊆ R⁵. Then B is linearly independent and spans col(R), and thus is a basis of col(R). This tells us that dim(col(R)) = 4. Now let X denote the set of columns of R that contain the leading ones.

Example

Let

$$\mathbf{R} = \begin{bmatrix} 1 & 2 & 2 & -2 & 0 & 0 \\ 0 & 1 & 3 & 1 & -1 & 2 \\ 0 & 0 & 0 & 1 & -2 & 5 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

- 1. Since the nonzero rows of R are linearly independent, they form a basis of row(R).
- 2. Let $B = \{\vec{e}_1, \vec{e}_2, \vec{e}_3, \vec{e}_4\} \subseteq \mathbb{R}^5$. Then B is linearly independent and spans $\operatorname{col}(R)$, and thus is a basis of $\operatorname{col}(R)$. This tells us that $\dim(\operatorname{col}(R)) = 4$. Now let X denote the set of columns of R that $\operatorname{contain}$ the leading ones. Then X is a linearly independent subset of $\operatorname{col}(R)$ with $4 = \dim(\operatorname{col}(R))$ vectors. It follows that X spans $\operatorname{col}(R)$, and therefore is a basis of $\operatorname{col}(R)$.

Find a basis of U = span
$$\left\{ \begin{bmatrix} 1\\ -1\\ 0\\ 3 \end{bmatrix}, \begin{bmatrix} 2\\ 1\\ 5\\ 1 \end{bmatrix}, \begin{bmatrix} 4\\ -1\\ 5\\ 7 \end{bmatrix} \right\}$$
 and find dim(U).

Find a basis of U = span
$$\left\{ \begin{bmatrix} 1\\-1\\0\\3 \end{bmatrix}, \begin{bmatrix} 2\\1\\5\\1 \end{bmatrix}, \begin{bmatrix} 4\\-1\\5\\7 \end{bmatrix} \right\}$$
 and find dim(U).

Solution

Let A the the 3×4 matrix whose rows are the three columns listed. Then U = row(A), so it suffices to find a basis of row(A).

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 0 & 3\\ 2 & 1 & 5 & 1\\ 4 & -1 & 5 & 7 \end{bmatrix}$$

Find R, a row-echelon form of A. Then the nonzero rows of R are a basis of row(R). Since row(A) = row(R), the nonzero rows of R are a basis of row(A).

Solution (continued)

$$\begin{bmatrix} 1 & -1 & 0 & 3\\ 2 & 1 & 5 & 1\\ 4 & -1 & 5 & 7 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 & 3\\ 0 & 1 & 5/3 & -5/3\\ 0 & 0 & 0 & 0 \end{bmatrix}.$$
Therefore, $B = \left\{ \begin{bmatrix} 1\\ -1\\ 0\\ 3 \end{bmatrix}, \begin{bmatrix} 0\\ 3\\ 5\\ -5 \end{bmatrix} \right\}$ is a basis of U and dim(U) = 2.

Solution (continued)

$$\begin{bmatrix} 1 & -1 & 0 & 3\\ 2 & 1 & 5 & 1\\ 4 & -1 & 5 & 7 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 & 3\\ 0 & 1 & 5/3 & -5/3\\ 0 & 0 & 0 & 0 \end{bmatrix}.$$
Therefore, $B = \left\{ \begin{bmatrix} 1\\ -1\\ 0\\ 3 \end{bmatrix}, \begin{bmatrix} 0\\ 3\\ 5\\ -5 \end{bmatrix} \right\}$ is a basis of U and dim(U) = 2.

Solution (Another solution – usually more work.)

Take a linear combination of the three given vectors and set it equal to $\vec{0}_4$. If the vectors are independent, then they form a basis of U. Otherwise, delete vectors to cut the given set of vectors down to a basis.

The Rank Theorem

Rank-Nullity Theorem

Full Rank Cases

The Rank Theorem

The Rank Theorem

 $\dim(\mathsf{row}(A)) = \dim(\mathsf{col}(A)) = \mathsf{rank}(A)$

Remark

Recall that rank (A) is defined to be the nonzero rows in the row echelon form of A. From what we just learned, the rank of A can be equivalently defined as rank $(A) = \dim(row(A))$.

Remark

Recall that rank (A) is defined to be the nonzero rows in the row echelon form of A. From what we just learned, the rank of A can be equivalently defined as rank $(A) = \dim(row(A))$.

Theorem (Rank Theorem)

Let $A = \begin{bmatrix} \vec{A_1} & \vec{A_2} & \cdots & \vec{A_n} \end{bmatrix}$ be an $m \times n$ matrix with columns $\{\vec{A_1}, \vec{A_2}, \dots, \vec{A_n}\}$, and suppose that rank (A) = r. Then

$$\dim(row(A)) = \dim(col(A)) = r.$$

Furthermore, if R is a row-echelon form of A then

- 1. the r nonzero rows of R are a basis of row(A);
- 2. if $S = {\{\vec{A}_{j_1}, \vec{A}_{j_2}, \dots, \vec{A}_{j_r}\}}$ are the r columns of A corresponding to the columns of R containing leading ones, then S is basis of col(A).

For the following matrix A, find rank (A) and bases for row(A) and col(A).

$$\mathbf{A} = \begin{bmatrix} 2 & -4 & 6 & 8\\ 2 & -1 & 3 & 2\\ 4 & -5 & 9 & 10\\ 0 & -1 & 1 & 2 \end{bmatrix}.$$

For the following matrix A, find rank (A) and bases for row(A) and col(A).

$$\mathbf{A} = \begin{bmatrix} 2 & -4 & 6 & 8\\ 2 & -1 & 3 & 2\\ 4 & -5 & 9 & 10\\ 0 & -1 & 1 & 2 \end{bmatrix}.$$

Solution

$$\begin{bmatrix} 2 & -4 & 6 & 8\\ 2 & -1 & 3 & 2\\ 4 & -5 & 9 & 10\\ 0 & -1 & 1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 3 & 4\\ 0 & 1 & -1 & -2\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

For the following matrix A, find rank (A) and bases for row(A) and col(A).

$$\mathbf{A} = \begin{bmatrix} 2 & -4 & 6 & 8\\ 2 & -1 & 3 & 2\\ 4 & -5 & 9 & 10\\ 0 & -1 & 1 & 2 \end{bmatrix}.$$

Solution

$$\begin{bmatrix} 2 & -4 & 6 & 8\\ 2 & -1 & 3 & 2\\ 4 & -5 & 9 & 10\\ 0 & -1 & 1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 3 & 4\\ 0 & 1 & -1 & -2\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

▶ rank (A) = 2.

For the following matrix A, find rank (A) and bases for row(A) and col(A).

$$\mathbf{A} = \begin{bmatrix} 2 & -4 & 6 & 8\\ 2 & -1 & 3 & 2\\ 4 & -5 & 9 & 10\\ 0 & -1 & 1 & 2 \end{bmatrix}.$$

Solution

$$\begin{bmatrix} 2 & -4 & 6 & 8 \\ 2 & -1 & 3 & 2 \\ 4 & -5 & 9 & 10 \\ 0 & -1 & 1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 3 & 4 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

For the following matrix A, find rank (A) and bases for row(A) and col(A).

$$\mathbf{A} = \begin{bmatrix} 2 & -4 & 6 & 8\\ 2 & -1 & 3 & 2\\ 4 & -5 & 9 & 10\\ 0 & -1 & 1 & 2 \end{bmatrix}.$$

Solution

$$\begin{bmatrix} 2 & -4 & 6 & 8 \\ 2 & -1 & 3 & 2 \\ 4 & -5 & 9 & 10 \\ 0 & -1 & 1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 3 & 4 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Problem (revisited)

Find a basis of U = span
$$\left\{ \begin{bmatrix} 1\\ -1\\ 0\\ 3 \end{bmatrix}, \begin{bmatrix} 2\\ 1\\ 5\\ 1 \end{bmatrix}, \begin{bmatrix} 4\\ -1\\ 5\\ 7 \end{bmatrix} \right\}$$
and find dim(U).

Problem (revisited)

Find a basis of U = span
$$\left\{ \begin{bmatrix} 1\\-1\\0\\3 \end{bmatrix}, \begin{bmatrix} 2\\1\\5\\1 \end{bmatrix}, \begin{bmatrix} 4\\-1\\5\\7 \end{bmatrix} \right\} \text{ and find dim(U)}.$$

Solution

By t

dim(

Let A denote the matrix whose columns are the three vectors listed, and let R denote a row-echelon form of A. Then

$$A = \begin{bmatrix} 1 & 2 & 4 \\ -1 & 1 & -1 \\ 0 & 5 & 5 \\ 3 & 1 & 7 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = R.$$

he Rank Theorem,
$$\left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 5 \\ 1 \end{bmatrix} \right\}$$
 is a basis of $U = col(A)$, so
 $U = 2.$

Compare this to the basis found earlier.

Corollary

- 1. For any matrix A, rank $(A) = \operatorname{rank} (A^{T})$.
- 2. For any $m \times n$ matrix A, rank (A) $\leq m$ and rank (A) $\leq n$.
- 3. Let A be an $m \times n$ matrix. If U and V are invertible matrices (of sizes $m \times m$ and $n \times n$, respectively), then

 $\operatorname{rank}(A) = \operatorname{rank}(UA) = \operatorname{rank}(AV).$

Let A be an $m \times n$ matrix, U a $p \times m$ matrix, and V an $n \times q$ matrix.

1. $col(AV) \subseteq col(A)$ with equality if $VV' = I_n$ for some V'.

2. $row(UA) \subseteq row(A)$ with equality if $U'U = I_m$ for some U'.

Let A be an m \times n matrix, U a p \times m matrix, and V an n \times q matrix.

- 1. $col(AV) \subseteq col(A)$ with equality if $VV' = I_n$ for some V'.
- 2. row(UA) \subseteq row(A) with equality if U'U = I_m for some U'.

Proof.

(1) Write $V = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_q \end{bmatrix}$, where \vec{v}_j denotes column j of V, $1 \leq j \leq q$. Then $AV = \begin{bmatrix} A\vec{v}_1 & A\vec{v}_2 & \cdots & A\vec{v}_q \end{bmatrix}$, where $A\vec{v}_j$ is column j of AV. By the definition of matrix-vector multiplication, $A\vec{v}_j$ is a linear combination of the columns of A, and thus $A\vec{v}_j \in col(A)$ for each j. Since $A\vec{v}_1, A\vec{v}_2, \ldots, A\vec{v}_q \in col(A)$,

$$\operatorname{span}\{\operatorname{A}\vec{v}_1,\operatorname{A}\vec{v}_2,\ldots,\operatorname{A}\vec{v}_q\}\subseteq\operatorname{col}(\operatorname{A}),$$

i.e., $col(AV) \subseteq col(A)$.

Let A be an m \times n matrix, U a p \times m matrix, and V an n \times q matrix.

- 1. $col(AV) \subseteq col(A)$ with equality if $VV' = I_n$ for some V'.
- 2. $row(UA) \subseteq row(A)$ with equality if $U'U = I_m$ for some U'.

Proof.

(1) Write $V = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_q \end{bmatrix}$, where \vec{v}_j denotes column j of V, $1 \leq j \leq q$. Then $AV = \begin{bmatrix} A\vec{v}_1 & A\vec{v}_2 & \cdots & A\vec{v}_q \end{bmatrix}$, where $A\vec{v}_j$ is column j of AV. By the definition of matrix-vector multiplication, $A\vec{v}_j$ is a linear combination of the columns of A, and thus $A\vec{v}_j \in col(A)$ for each j. Since $A\vec{v}_1, A\vec{v}_2, \ldots, A\vec{v}_q \in col(A)$,

$$\operatorname{span}\{A\vec{v}_1,A\vec{v}_2,\ldots,A\vec{v}_q\}\subseteq\operatorname{col}(A),$$

i.e., $col(AV) \subseteq col(A)$. If for some V' we have $VV' = I_n$, then

$$col(A) = col(AVV') \subseteq col(AV) \subseteq col(A).$$

Let A be an m \times n matrix, U a p \times m matrix, and V an n \times q matrix.

- 1. $col(AV) \subseteq col(A)$ with equality if $VV' = I_n$ for some V'.
- 2. row(UA) \subseteq row(A) with equality if U'U = I_m for some U'.

Proof.

(1) Write $V = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_q \end{bmatrix}$, where \vec{v}_j denotes column j of V, $1 \leq j \leq q$. Then $AV = \begin{bmatrix} A\vec{v}_1 & A\vec{v}_2 & \cdots & A\vec{v}_q \end{bmatrix}$, where $A\vec{v}_j$ is column j of AV. By the definition of matrix-vector multiplication, $A\vec{v}_j$ is a linear combination of the columns of A, and thus $A\vec{v}_j \in col(A)$ for each j. Since $A\vec{v}_1, A\vec{v}_2, \ldots, A\vec{v}_q \in col(A)$,

$$\operatorname{span}\{A\vec{v}_1,A\vec{v}_2,\ldots,A\vec{v}_q\}\subseteq\operatorname{col}(A),$$

i.e., $col(AV) \subseteq col(A)$. If for some V' we have $VV' = I_n$, then

$$col(A) = col(AVV') \subseteq col(AV) \subseteq col(A).$$

(2) This can be proved by part (1) and the fact that $row(A) = col(A^{T})$.

Row Space and Column Spaces

The Rank Theorem

Rank-Nullity Theorem

Full Rank Cases

Rank-Nullity Theorem

Rank-Nullity Theorem

Theorem (Rank-Nullity Theorem)

Let A denote an m \times n matrix of rank r. Then

1. The n – r basic solutions to the system $A\vec{x} = \vec{0}_m$ provided by the Gaussian algorithm are a basis of null(A), so

 $\dim(\operatorname{null}(A)) = n - r.$

2. The rank theorem provides a basis of im(A) = col(A), and dim(im(A)) = r.

Theorem (Rank-Nullity Theorem)

Let A denote an m \times n matrix of rank r. Then

1. The n – r basic solutions to the system $A\vec{x} = \vec{0}_m$ provided by the Gaussian algorithm are a basis of null(A), so

 $\dim(\operatorname{null}(A)) = n - r.$

2. The rank theorem provides a basis of im(A) = col(A), and dim(im(A)) = r.

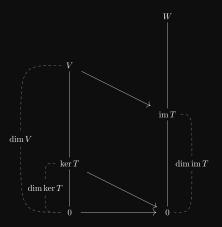
Remark (Common notation)

The nullspace A is also called kernel space of A, written as ker(A), i.e., ker(A) = null(A). Usually, the nullity of A is defined to be

Nullity(A) = dim(null(A)) = dim(ker(A))

Let $T: V \mapsto W$ be the linear map from space V to W. Suppose $V = \mathbb{R}^n$ and $W = \mathbb{R}^m$ and let A be the induced matrix.

$\operatorname{Rank}(T)$	$\operatorname{Nullity}(T)$	$\dim(V)$
$\operatorname{Rank}(A)$	Nullity(A)	$\dim(\mathbb{R}^n)$
$\dim(\mathrm{im}(A))$	$\dim(\operatorname{null}(A))$	n
r	$\dim(\ker(A))$	



Proof. (Outline)

- ▶ We have already seen that null(A) is spanned by any set of basic solutions to $A\vec{x} = \vec{0}_m$, so it is enough to prove that $\dim(\text{null}(A)) = n r$, which will implies that the set of basic solutions is independent, hence this set forms a basis.
- ► Suppose $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ is a basis of null(A)
- $\blacktriangleright \text{ Extend } \{\vec{x}_1,\vec{x}_2,\ldots,\vec{x}_k\} \text{ to a basis } \{\vec{x}_1,\vec{x}_2,\ldots,\vec{x}_k,\ldots\vec{x}_n\} \text{ of } \mathbb{R}^n.$
- $\blacktriangleright \text{ Consider the set } \{A\vec{x}_1, A\vec{x}_2, \dots, A\vec{x}_k, \dots A\vec{x}_n\} \subseteq \mathbb{R}^m$
- ▶ Then $A\vec{x}_j = \vec{0}_m$ for $1 \le j \le k$ since $\vec{x}_1, \dots, \vec{x}_k \in null(A)$.
- ➤ To complete the proof, show S = {Ax_{k+1},...Ax_n} is a basis of im(A), by showing that (exercise!)
 - (1) S is independent
 - (2) S spans im(A)
- Since im(A) = col(A), dim(im(A)) = r, implying n k = r. Hence k = n r.

$\operatorname{Problem}$

For the following matrix A, find bases for null(A) and im(A), and find their dimensions.

$$\mathbf{A} = \begin{bmatrix} 2 & -4 & 6 & 8\\ 2 & -1 & 3 & 2\\ 4 & -5 & 9 & 10\\ 0 & -1 & 1 & 2 \end{bmatrix}.$$

Solution

Find the basic solutions to $A\vec{x} = \vec{0}_4$.

$$\begin{bmatrix} 2 & -4 & 6 & 8 & | & 0 \\ 2 & -1 & 3 & 2 & | & 0 \\ 4 & -5 & 9 & 10 & | & 0 \\ 0 & -1 & 1 & 2 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 3 & 4 & | & 0 \\ 0 & 1 & -1 & -2 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}.$$

Hence,

$$\vec{x} = \begin{bmatrix} -s \\ s + 2t \\ s \\ t \end{bmatrix} \quad s, t \in \mathbb{R}.$$

Solution

Find the basic solutions to $A\vec{x} = \vec{0}_4$.

$$\begin{bmatrix} 2 & -4 & 6 & 8 & | & 0 \\ 2 & -1 & 3 & 2 & | & 0 \\ 4 & -5 & 9 & 10 & | & 0 \\ 0 & -1 & 1 & 2 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 3 & 4 & | & 0 \\ 0 & 1 & -1 & -2 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}.$$

Hence,

$$\vec{x} = \begin{bmatrix} -s \\ s+2t \\ s \\ t \end{bmatrix} \quad s, t \in \mathbb{R}.$$

Therefore,

$$\left\{ \begin{bmatrix} -1\\1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\0\\1 \end{bmatrix} \right\} \text{ and } \left\{ \begin{bmatrix} 2\\2\\4\\0 \end{bmatrix}, \begin{bmatrix} -4\\-1\\-5\\-1 \end{bmatrix} \right\}$$

are bases of null(A) and im(A), respectively, so

 $\dim(\operatorname{null}(A)) = 2$ and $\dim(\operatorname{im}(A)) = 2$.

$\operatorname{Problem}$

Can a 5×6 matrix have independent columns? Independent rows? Justify your answer.

Can a 5×6 matrix have independent columns? Independent rows? Justify your answer.

Solution

The rank of the matrix is at most five; since there are six columns, the columns can not be independent. However, the rows could be independent:

Can a 5×6 matrix have independent columns? Independent rows? Justify your answer.

Solution

The rank of the matrix is at most five; since there are six columns, the columns can not be independent. However, the rows could be independent: take a 5×6 matrix whose first five columns are the columns of the 5×5 identity matrix.

Let A be an $m \times n$ matrix with rank (A) = m. Prove that $m \leq n$.

Let A be an $m \times n$ matrix with rank (A) = m. Prove that $m \leq n$.

Proof.

As a consequence of the Rank Theorem, we have

rank $(A) \leq m$ and rank $(A) \leq n$.

Since rank (A) = m, it follows that $m \leq n$.

Let A be an 5×9 matrix. Is it possible that $\dim(\mathrm{null}(\mathrm{A}))=3?$ Justify your answer.

Let A be an 5×9 matrix. Is it possible that dim(null(A)) = 3? Justify your answer.

Solution

As a consequence of the Rank Theorem, we have rank $(A) \leq 5$, so $\dim(\operatorname{im}(A)) \leq 5$. Since $\dim(\operatorname{null}(A)) = 9 - \dim(\operatorname{im}(A))$, it follows that

 $\dim(\operatorname{null}(A)) \ge 9 - 5 = 4.$

Therefore, it is not possible that $\dim(\text{null}(A)) = 3$.

Row Space and Column Spaces

The Rank Theorem

Rank-Nullity Theorem

Full Rank Cases

Theorem

Theorem

Let A be an m \times n matrix. The following are equivalent.

1. rank (A) = n.

Theorem

- 1. rank (A) = n.
- 2. $row(A) = \mathbb{R}^n$, i.e., the rows of A span \mathbb{R}^n .

Theorem

- 1. rank (A) = n.
- 2. $row(A) = \mathbb{R}^n$, i.e., the rows of A span \mathbb{R}^n .
- 3. The columns of A are independent in \mathbb{R}^m .

Theorem

- 1. rank (A) = n.
- 2. $row(A) = \mathbb{R}^n$, i.e., the rows of A span \mathbb{R}^n .
- 3. The columns of A are independent in \mathbb{R}^m .
- 4. The $n \times n$ matrix $A^T A$ is invertible.

Theorem

- 1. rank (A) = n.
- 2. $row(A) = \mathbb{R}^n$, i.e., the rows of A span \mathbb{R}^n .
- 3. The columns of A are independent in \mathbb{R}^m .
- 4. The $n \times n$ matrix $A^T A$ is invertible.
- 5. There exists and $n \times m$ matrix C so that $CA = I_n$.

Theorem

- 1. rank (A) = n.
- 2. $row(A) = \mathbb{R}^n$, i.e., the rows of A span \mathbb{R}^n .
- 3. The columns of A are independent in \mathbb{R}^m .
- 4. The $n \times n$ matrix $A^T A$ is invertible.
- 5. There exists and $n \times m$ matrix C so that $CA = I_n$.
- 6. If $A\vec{x} = \vec{0}_m$ for some $\vec{x} \in \mathbb{R}^n$, then $\vec{x} = \vec{0}_n$.

Let A be an m \times n matrix. The following are equivalent. 1. rank (A) = m.

- 1. rank (A) = m.
- 2. $col(A) = \mathbb{R}^m$, i.e., the columns of A span \mathbb{R}^m .

- 1. rank (A) = m.
- 2. $col(A) = \mathbb{R}^m$, i.e., the columns of A span \mathbb{R}^m .
- 3. The rows of A are independent in \mathbb{R}^n .

- 1. rank (A) = m.
- 2. $col(A) = \mathbb{R}^m$, i.e., the columns of A span \mathbb{R}^m .
- 3. The rows of A are independent in \mathbb{R}^n .
- 4. The m \times m matrix AA^T is invertible.

- 1. rank (A) = m.
- 2. $col(A) = \mathbb{R}^m$, i.e., the columns of A span \mathbb{R}^m .
- 3. The rows of A are independent in \mathbb{R}^n .
- 4. The m \times m matrix AA^T is invertible.
- 5. There exists and $n \times m$ matrix C so that $AC = I_m$.

- 1. rank (A) = m.
- 2. $col(A) = \mathbb{R}^m$, i.e., the columns of A span \mathbb{R}^m .
- 3. The rows of A are independent in \mathbb{R}^n .
- 4. The m \times m matrix AA^T is invertible.
- 5. There exists and $n \times m$ matrix C so that $AC = I_m$.
- 6. The system $A\vec{x} = \vec{b}$ is consistent for every $\vec{b} \in \mathbb{R}^m$.

Let $\vec{x} = (x_1, \cdots, x_k)^T \in \mathbb{R}^k$. Show that the following matrix is invertible if and only if $\{x_i, i = 1, \cdots, k\}$ are not all equal:

$$\begin{pmatrix} k & x_1+\dots+x_k \\ x_1+\dots+x_k & ||x||^2 \end{pmatrix}$$

Let $\vec{x} = (x_1, \cdots, x_k)^T \in \mathbb{R}^k$. Show that the following matrix is invertible if and only if $\{x_i, i = 1, \cdots, k\}$ are not all equal:

$$\begin{pmatrix} k & x_1+\dots+x_k \\ x_1+\dots+x_k & ||x||^2 \end{pmatrix}$$

Solution

Notice that

$$\begin{pmatrix} k & x_1 + \dots + x_k \\ x_1 + \dots + x_k & ||x||^2 \end{pmatrix} = A^T A$$

with

$$\mathbf{A} = \begin{bmatrix} 1 & \mathbf{x}_1 \\ 1 & \mathbf{x}_2 \\ \vdots & \vdots \\ 1 & \mathbf{x}_k \end{bmatrix}.$$

Now $A^T A$ is invertible iff the two columns of A are independent iff $\{x_i, i = 1, \cdots, k\}$ are not all equal.